kiné Limoges 2002 |
|||
|
|||
On considère un astre sphérique de centre O, homogène, entièrement solide , de rayon R= 6000 km, de masse M= 6 1024 kg. Pour simplifier les calculs, on prendra la constante de gravitation G= 6 10-11 S.I
écrire la seconde loi de Newton : en M ( x>0 ) : - m g0x / R = mx" en N (x<0) : m g0(-x) / R = mx" d'où l'équation différentielle : mx" + m g0 / R x =0 x" + w²0x = 0 avec w²0 = g0 / R. il s'agit de
l'équation différentielle d'un oscillateur
harmonique (mouvement sinusoïdal périodique).
vitesse : x' (t) = Xm (-w0) sin (w0t + j) vitesse initiale nulle en A : x' (t=0) = 0 = Xm (-w0) sin ( j) soit j =0 ou j = p. j =0 conduit à : x (t=0) = R = Xm cos ( 0) = Xm ( accord avec le texte à t=0 on est en A) j =p conduit à : x (t=0) = R = Xm cos ( p ) = -Xm ( désaccord avec le texte à t=0 on est en A et non en B) x(t) = R cos (w0t ) avec w²0 = g0 / R. la période est égale à : T0 = 2p/w0 = 2p/ racine carrée (R/g0 ). la durée du parcours AB est égal à une demi-période : p/ racine carrée (R/g0 ) = 3,14 racine carrée ( 6 106 / 10) = 2500 s. retour - menu |