|
dipole RL Amérique du sud bac 12 / 98 En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de Cookies vous proposant des publicités adaptées à vos centres d’intérêts.
|
||||||
|
circuit RL constante de temps inductance
|
On branche en série une pile de fem E et de résistance interne r, un interrupteur K, une bobine inductive d'inductance L et de résistance R1, et un résistor R2. Un ordinateur relié au montage par une interface appropriée, permet d'enregistrer au cours du temps les valeurs des tensions.
|
|||||
|
Sur la voie 1 on visualise uAM, tension aux bornes de la pile, générateur de tension imparfait. y1 correspond à uAM. A l'instant où l'on ferme le circuit, l'intensité est nulle et la tension aux bornes de la pile est égale à sa fem soit E=14 V (lecture graphe y1). Sur la voie 2 on visualise la tension uBM, aux bornes d'un résistor. A l'instant où l'on ferme le circuit, l'intensité est nulle et la tension aux bornes du résistor R2 est nulle. y2 correspond à uBM. La bobine stocke de l'énergie lors de la fermeture de l'interrupteur ce qui a pour conséquence de retarder l'établissement d'un régime permanent (intensité constante dans ce cas). en régime permanent : Y = 9,5 V lecture graphe y2. 9,5 = 50 I d'où I = 0,19 A. uBM = 50 I =Y =9,5 V La bobine se comporte comme une résistance uAB = R1 I = 0,19 R1. si R1 voisin de zéro alors uAM voisin de uBM. Or la lecture des graphes pour un temps supérieur à 10 ms montre une différence entre uAM et uBM. Cette différence représente uAB tension aux bornes de la bobine en régime permanent. uAB voisin de 2V (lecture graphe) d'où R1 voisin de 2 /0,19 = 10,5 W. uAM = E-rI =14-0,19 r voisin de 11,5 V (lecture graphe à t supérieur à 10 ms) 0,19 r = 2,5 d'où r = 13,1 W. équation aux dimensions L : [H] = [V] [A] -1 [s]. remarque u=Ldi / dt aux bornes bobine pure. R :[W]= [V] [A]-1. L / R : [V] [A] -1 [s] [A] [V]-1 = [s] R représente la somme de toutes les résistances du circuit soit R = r +R1 + R2 = 73,6 W. intensité Lorsque le temps devient grand (supérieur à 5 fois la constante de temps) l'exponentielle tend vers zéro et A représente l'intensité en régime permanent soit I=0,19 A. constante de temps détermination graphique y2. L'intensité est constante à partir d'une durée voisine de 5t soit environ 10ms d'où t voisin 2 ms. La valeur de l'intensité est égale à 0,63 I à un temps égal à t. soit uBM voisin de 0,63*9,5 = 6V d'où t voisin 2 ms. le coefficient directeur de la tangente à la courbe y2 à t=0 est égal à R2I / t = 9,5 / t. inductance et énergie stockée : L = R t =73,6* 2 10-3 = 0,15 H. énergie : 0,5 L I² = 0,5 *0,15*0,19² = 2,7 mJ.
|
||||||
|
|