Aurélie 06/09/09

 

 

Mathématiques : concours ASPTS agent spécialiste police technique et scientifique ; Lyon 2007.

En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de Cookies vous proposant des publicités adaptées à vos centres d’intérêts.

. .
.
.

Indiquer la bonne réponse.

L'expression A est égale à : 3 10-2 ; -3 10-2 ; 3 / 5 10-2.


L'expression B est égale à :10 / 7 ; -3 / 7 ; 1/ 7.


4 (x-3) - 3 (1 /3 -2x) = 13(x-1) a pour solution : -3 ; 0 ; 3

4x -12 -1 +6x = 13 x -13

10x -13 = 13x -13 ; 13 x -10x = 13-13 ; 3 x=0 ; x =0.



L'expression C est égale à : 16 ; 8 - 2 racine carre (5) ; 11.

L'expression D est égale à : 11 ; 5 - 5 ; 3 -2 ; 5


Résoudre le système d'équations suivant par combinaison :


Un torréfacteur met en vente 2 sortes de mélange de café. Le mélange A est composé de 60 % d'Arabica et de 40 % de Robusta et coûte 13 € le kilogramme.

Le mélange B est composé de 40 % d'Arabica et de 60 % de Robusta et coûte 12 € le kilogramme.On appellera X le prix du kilogramma d'Arabica et Y le prix du kilogramme de Robusta.

Quel est le prix du kilogramme d'Arabica et du kilogramme de Robustat ?

0,6 X + 0,4 Y = 13 (1) et 0,4 X +0,6 Y = 12 (2)

Multiplier tout par 5 afin de retrouver le système ci-dessus.

3X +2Y = 65 et 2X +3Y = 60. (X = 15 et Y = 10 )


On donne l'expression suivante C = (3x-2)2-25

Développer et réduire C.

C = 9x2-12x+4-25 ; C =9x2-12x-21.

Factoriser C.

Différence de deux carrés A2-B2 = (A-B)(A+B) avec A = 3x-2 et B =5.

C = (3x-2-5)(3x-2+5) =(3x-7)(3x+3) = 3(3x-7)(x+1).

Calculer C pour X = 1/3.

(3x-2)2 = (1-2)2 = 1 ; C =1-25 = -24.

Résoudre (3x-7)(x+1) =0.

3x-7 = 0 ; 3x = 7 ; x = 7/3.

et x+1=0 ; x = -1.


Résoudre l'inéquation 4x+7 >2-3x et représenter ses solutions sur une droite graduée.

4x +3x >2-7 ; 7x >-5 ; x >-5/7.



 


Le tableau ci-dessous indique la répartition des élèves d'une classe suivant leur taille.

Compléter le tableau :
tranche de taille
taille en cm
effectif ni ( nombre d'élèves)
fréquence fi en %
effectifs cumulés croissants en %
effectifs cumulés décroissants en %
angles en °
A
[150 ; 160 [
8
25
25
100
90
B
[160 ; 170 [
16
50
75
25
180
C
[170 ; 180 [
4
12,5
87,5
12,5
45
D
[180 ; 190 [
4
12,5
100
0
45
Total
xxxxxxxxxxxxx


100
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
360

Déterminer le nombre d'élèves mesurant moins de 170 cm.

Taille inférieure à 170 cm ; 16 + 8 = 24.

Déterminer le nombre d'élèves mesurant au moins de 170 cm.

Taille supérieure à 170 cm ; 4 +4 = 8.

Reproduire sur un diagramme circulaire, les différentes tranches de tailles des élèves.

 





 

Le prix officiel du véhicule Xsara Picasso est de 20 000 € H.T. Sachant que le taux de TVA appliqué est de 19,6 %,

quel est le prix d'un tel véhicule TTC ?

20 000 *1,196 = 23 920 €.


On a relevé les notes obtenues par de élèves à un devoir de mathématiques.
notes
7
8
8,5
9
10
11
13
15,5
18
effectifs
1
2
2
4
4
6
2
2
2
Calculer la moyenne en détaillant les calculs.

Effectif total : 1 +2 +2 +4 +4 +6 +2 +2 +2 = 25.

moyenne : (7 +8*2 +8,5*2 +9*4 +10*4 +11*6 +13*2 +15.5*2 +18*2) / 25

(7 +16 +17 +36 +40 +66 +26 +31 +36) / 25 = 11.

Déterminer la médiane en justifiant.

La médiane est  le nombre qui permet de couper la population étudiée en deux groupes contenant le même nombre d'individus

L'un des groupe a des notes supérieures à la note médiane, l'autre groupe a des notes inférieures à la note médiane.

 

notes
7
8
8,5
9
10
11
13
15,5
18
effectifs
1
2
2
4
4
6
2
2
2
effectif cumulé croissant
1
3
5
9
13
19
21
23
25

(25 +1) / 2 = 13 ; la note médiane est la 13è note, c'est  à dire 10.


Mika propose des boules de glace de 2 cm de rayon.

Calculer le volume d'une boule en fonction de pi.

4 /3 pi R3 = 4/3 pi *23 =10,67 pi cm3.

Des clients très gourmands ont réclamé des boules plus grosses. Mika a doublé le rayon de ces boules.

Par combien le volume d'une boule a t-il été multiplié ?

Le volume est proportionnel au cube du rayon ; si le rayon double, le volume est multiplié par 23=8.




 


retour -menu