« Tout
corps persévère dans l’état de repos ou de mouvement uniforme en ligne
droite dans lequel il se trouve, à moins que quelque force n’agisse sur
lui, et ne le contraigne à changer d’état »
Q1. Énoncer dans un langage plus actuel la première loi de
Newton, aussi appelée principe d’inertie, ou donner les relations
mathématiques qui la traduisent.
Tout
corps persévère dans son état de repos ou de mouvement rectiligne
uniforme si les forces qui s'exercent sur lui se compensent.
Un expérimentateur lâche dans l’air une plume et une boule de bowling
d’une certaine hauteur. Dans l’air, la plume arrive en bas après la
boule de bowling. La plume utilisée est photographiée.
Q2. Choisir, parmi
les points A, B ou C, celui qui représente le centre de masse G de la
plume.
Le point B représente le centre de masse de la plume.
Sur la figure, l’intervalle de temps
t entre chaque point a une
valeur égale à 0,085 s.
Q3. À l’aide la
figure, calculer v
7 et v
9, les valeurs des
vitesses aux points G
7 et G
9.
v
7 = G
6G
8 / (2
t )=0,55 /0,17 ~ 3,2 m /s.
v9 =
G10G8 / (2t
)=0,55 /0,17 ~ 3,2 m /s.
Dans la suite de l’exercice nous approximerons la portion du mouvement
entre les points G
6 et G
11 comme étant rectiligne
uniforme. De plus, nous considérerons comme négligeable l’effet de la
poussée d’Archimède, exercée par l’air sur la plume, devant les autres
forces.
Données :
- L’intensité de la pesanteur terrestre g a une valeur égale à 9,81 N·kg
–1
;
- La masse m de la plume a une valeur égale à 0,985 g.
Q4. Dresser la
liste des forces qui s’appliquent à la plume lors de sa chute dans
l’air. Puis donner, dans la portion du mouvement entre les points G
6
et G
11, en justifiant, la relation mathématique qui les lie.
À l’aide des données, déduire par un calcul la valeur f de la force de
frottement.
La plume est soumise à son poids, verticale, vers le bas, valeur P = mg
et aux forces de frottement sur les couches d'air.
Le mouvement étant rectiligne uniforme, ces deux forces sont opposées.
f = mg = 0,985 10
-3 x9,81 =9,66 10
-3 N