De l'effet Doppler à ses applications. Bac S Métropole 2016.



1. Mouvement relatif d’une source sonore et d’un détecteur.
Nous nous intéressons dans un premier temps au changement de fréquence associé au mouvement relatif d’une source sonore S et d’un détecteur placé au point M. Le référentiel d’étude est le référentiel terrestre dans lequel le détecteur est immobile. Une source S émet des « bips » sonores à intervalles de temps réguliers dont la période d’émission est notée T0. Le signal sonore se propage à la célérité vson par rapport au référentiel terrestre.

1.1. Cas A : la source S est immobile en x = 0 et le détecteur M, situé à la distance d, perçoit chaque bip sonore avec un retard lié à la durée de propagation du signal.
1.1.1. Définir par une phrase, en utilisant l’expression « bips sonores », la fréquence f0 de ce signal
périodique.
La fréquence ( en Hz) est l'inverse de la période ( en s) des bips sonores. La fréquence est le nombre de bips sonores émis par seconde.
1.1.2. Comparer la période temporelle T des bips sonores perçus par le détecteur à la période d’émission T0.
Source et détecteur sont immobiles : T = T0.
1.2. Cas B : la source S, initialement en x = 0, se déplace à une vitesse constante vS suivant l’axe Ox en direction du détecteur immobile. La vitesse vS est inférieure à la célérité vson. On suppose que la source reste à gauche du détecteur. Le détecteur perçoit alors les différents bips séparés d’une durée T ' = T0[1-vs / vson].
Indiquer si la fréquence f ’ des bips perçus par le détecteur est inférieure ou supérieure à la fréquence f0
avec laquelle les bips sont émis par la source S. Justifier.
T ' est inférieure à T0 ; la fréquence est l'inverse de la période, donc f ' > f0.
2. La vélocimétrie Doppler en médecine.
La médecine fait appel à l’effet Doppler pour mesurer la vitesse d’écoulement du sang dans les vaisseaux sanguins.

Un émetteur produit des ondes ultrasonores qui traversent la paroi d’un vaisseau sanguin. Pour simplifier, on suppose que lorsque le faisceau ultrasonore traverse des tissus biologiques, il rencontre :
- des cibles fixes sur lesquelles il se réfléchit sans modification de la fréquence ;
- des cibles mobiles, comme les globules rouges du sang, sur lesquelles il se réfléchit avec une modification de la fréquence ultrasonore par effet Doppler
.





L’onde ultrasonore émise, de fréquence fE = 10 MHz, se réfléchit sur les globules rouges qui sont animés d’une vitesse v. L’onde réfléchie est ensuite détectée par le récepteur.
La vitesse v des globules rouges dans le vaisseau sanguin est donnée par la relation 
v = vultrason Df / ( 2 cos q fE)
Df est le décalage en fréquence entre l’onde émise et l’onde réfléchie, vultrason la célérité des ultrasons dans le sang et q l’angle défini sur la figure.
On donne vultrason = 1,57 × 103 m.s-1 et q = 45°.
2.1. Le décalage en fréquence mesuré par le récepteur est de 1,5 kHz. Identifier le(s) type(s) de vaisseaux sanguins dont il pourrait s’agir.
v = 1,57 103 *1,5 /(2*cos45*104) ~0,17 m/s.
Il s'agit donc des artérioles ou des capillaires.
2.2. Pour les mêmes vaisseaux sanguins et dans les mêmes conditions de mesure, on augmente la
fréquence des ultrasons émis fE. Indiquer comment évolue le décalage en fréquence Df. Justifier.
Toutes les autres données restent constantes, donc
Df / fE = constante.
Si fE augmente alors Df croît.









3. Détermination de la vitesse d’un hélicoptère par effet Doppler.
On s’intéresse à un son émis par un hélicoptère et perçu par un observateur immobile. La valeur de la fréquence de l’onde sonore émise par l’hélicoptère est f0 = 8,1 × 102 Hz. On se place dans le référentiel terrestre pour toute la suite de cette partie.
Les portions de cercles des figures ci-dessous donnent les maxima d’amplitude de l’onde sonore à un instant donné. Le point A schématise l’hélicoptère. Dans le cas de la figure 4, l’hélicoptère est immobile.
Dans le cas de la figure 5, il se déplace à vitesse constante le long de l’axe et vers l’observateur placé au point O. La célérité du son dans l’air est indépendante de sa fréquence.

3.1. Déterminer, avec un maximum de précision, la longueur d’onde de l’onde sonore perçue par l’observateur lorsque l’hélicoptère est immobile, puis la longueur d’onde l’ lorsque l’hélicoptère est en mouvement rectiligne uniforme.
5 l = 5/2,3 = 2,17 m ; l = 0,43 m.
5 l' = 4/2,3 = 1,74 m ; l' = 0,35 m.
3.2. En déduire une estimation de la valeur de la célérité de l’onde sonore. Commenter la valeur obtenue.
c = l f =0,43 * 8,1 102 =3,5 102 m/s, valeur en accord avec la réalité ( propagation du son dans l'air ).
La détermination de la longueur d'onde reste imprécise.
3.3. Déterminer la fréquence du son perçu par l’observateur lorsque l’hélicoptère est en mouvement. Cette valeur est-elle en accord avec le résultat de la question 1.2. ? Comment la perception du son est-elle modifiée ?
f ' = c / l' = 3,5 102 / 0,35 ~1,0 103 Hz.
Lorsque la source se rapproche de l'observateur, le son perçu est plus aigu, fréquence supérieure à celle du son émis..
3.4. En déduire la valeur de la vitesse de l’hélicoptère. Cette valeur vous paraît-elle réaliste ?
T ' = T0[1-vs / vson] ; f ' = fE  / [1-vs / vson] ; 1-vs / vson = fE / f ' ; vs / vson =1- fE / f ' ;
vs = vson [1- fE / f ' ]=3,5 102 [1-8,1 102 / (1,0 103)]~67 m/s ou 67*3,6 =2,4 102 km/h.
Cette valeur est réaliste pour un hélicoptère.

.



  

menu